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Abstract

The quantification of uncertainties is critical when systems are nonlinear and have uncer-

tain terms in their governing equations or are constrained by limited knowledge of initial

and boundary conditions. Such situations are common in multiscale, intermittent and non-

homogeneous fluid and ocean flows. The Dynamically Orthogonal (DO) field equations

provide an efficient time-dependent adaptive methodology to predict the probability den-

sity functions of such flows. The present work derives efficient computational schemes for

the DO methodology applied to unsteady stochastic Navier-Stokes and Boussinesq equa-

tions, and illustrates and studies the numerical aspects of these schemes. Semi-implicit

projection methods are developed for the mean and for the orthonormal modes that define

a basis for the evolving DO subspace, and time-marching schemes of first to fourth order

are used for the stochastic coefficients. Conservative second-order finite-volumes are em-

ployed in physical space with Total Variation Diminishing schemes for the advection terms.

Other results specific to the DO equations include: (i) the definition of pseudo-stochastic

pressures to obtain a number of pressure equations that is linear in the subspace size in-

stead of quadratic; (ii) symmetric Total Variation Diminishing-based advection schemes

for the stochastic velocities; (iii) the use of generalized inversion to deal with singular

subspace covariances or deterministic modes; and (iv) schemes to maintain orthonormal

modes at the numerical level. To verify the correctness of our implementation and study

the properties of our schemes and their variations, a set of stochastic flow benchmarks are

defined including asymmetric Dirac and symmetric lock-exchange flows, lid-driven cav-

ity flows, and flows past objects in a confined channel. Different Reynolds number and

Grashof number regimes are employed to illustrate robustness. Optimal convergence un-

der both time and space refinements is shown as well as the convergence of the probability

density functions with the number of stochastic realizations.
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1. Introduction

Quantifying uncertainty is becoming increasingly important in many sci-
entific and engineering applications. This is in part because the accuracy of
an answer is now often as critical as the answer itself. As a result, stochastic
modeling methods for uncertainty quantification are being developed. Our
present motivation is uncertainty quantification for computational fluid dy-
namics (CFD) applications, specifically in the context of providing realistic
predictions of ocean fields. In ocean dynamics, it is challenging to model
multi-scale, intermittent, non-stationary and non-homogeneous uncertain-
ties. Already a single evaluation of an ocean model is costly and straight-
forward stochastic modeling methods are prohibitively expensive [38, 48],
particularly when dealing with longer-term unsteady nonlinear dynamics.
Fortunately, the recently developed Dynamically Orthogonal (DO) field equa-
tions [52, 51, 53] provide an efficient, tractable means for uncertainty pre-
diction in large-scale CFD and ocean applications. While these DO equa-
tions have been solved numerically using a simple finite-difference scheme,
the specific properties of the DO equations warrant novel integration and
discretization schemes. Hence, our present goals are to derive efficient com-
putational schemes for the DO methodology applied to unsteady stochastic
Navier-Stokes and Boussinesq equations, and to illustrate and study the nu-
merical aspects of these schemes.

Stochastic modeling approaches can be categorized as either non-intrusive
or intrusive. Non-intrusive approaches have the advantage that the deter-
ministic version of a model can be used to generate an ensemble of sample
solutions from which the statistics can be calculated. The disadvantage is
that a large number of samples are often required, leading to large computa-
tional costs. Intrusive approaches require the update of existing codes or the
development of a new code, where the resulting system of equations can be
larger than the original, deterministic system. However, intrusive methods
are usually computationally less expensive than non-intrusive methods, and
the statistics are explicitly available. Below we give a brief review of existing
methods, focusing on their computational aspects. For more complete refer-
ences and reviews we refer for e.g. to: Ghanem and Spanos [18], Kloeden and
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Platen [26], Doucet et al [9], Mathelin et al [45], Eldred et al [10], Jakeman
and Roberts [24], Najm [49], Xiu [67, 68], Le Matre and Knio [30].

The non-intrusive Monte-Carlo method provides access to the full statis-
tics of the problem. Its computational cost does not strictly depend on the
size of the system, but more on the number of truly independent random
variables, and convergence rates are often proportional to the square root
of the number of samples. The efficiency can be improved for example by
using more elaborate Monte-Carlo schemes [e.g. 9], including particle filters
or mixtures of weighted kernels, e.g. Gaussian kernels [5, 47]. Nonetheless,
a large number of function evaluations are needed due to the slow (square
root) convergence, which can limit accuracy in large-scale applications.

The Polynomial chaos expansion (PCE), pioneered by Ghanem and Spanos
[18] and based on the theory by Wiener [65, 2, 66], has become popular
because it can represent and propagate large uncertainties through com-
plex models. Both non-intrusive [e.g. 64, 27, 23, 10] and intrusive [e.g.
7, 28, 62, 44, 49] versions have been employed, but both can suffer from
the curse of dimensionality. That is, the PCE of a dynamical model scales
as (p+s)!

p!s!
, where p is the largest degree of the polynomials used, and s is the

number of independent random variables. For problems that require large
p (e.g. non-Gaussian) and large s (e.g. large ocean or fluid simulations),
the number of function evaluations (non-intrusive), or the size of the sys-
tem of equations (intrusive), can quickly become prohibitive. For s larger
than p, the storage of a PCE scales as O(sp) while its computational cost
for Navier-Stokes flows scales as O(s2p) due to the quadratic nonlinearity of
advection terms. The large cost of these methods have prompted the use
of non-Gaussian random variables [50], the development of generalized PCE
[69] to speed up convergence in the polynomial degree (i.e. reduce p), and
the development of adaptive schemes that only evaluate the necessary terms
in the PCE (Li and Ghanem [40]).

PCEs have been successful in many CFD applications. In the case of un-
steady incompressible fluid dynamics, Le Mâıtre et al [29] used a PCE scheme
to study mixing in a two-dimensional (2D) micro-channel and improved the
efficiency of their solution scheme by decoupling the velocity-pressure equa-
tions using a projection method. Wan and Karniadakis [63] studied the long
term behavior of a generalized PCE first using the 1D advection equation
and then a 2D noisy flow past a circular cylinder. The authors showed that
multi-element generalized PCEs can significantly improve the accuracy for
long time integration, but caution that the cost for large s remain high. Other
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applications include fluid-structure interactions [e.g. 70], turbulence [e.g. 43],
aerodynamics [e.g. 56], and ocean acoustics [e.g. 14]. Other examples are
also studied in the above references.

Motivated by the multi-scale, intermittent and non-homogeneous uncer-
tain ocean fields, the Error Subspace Statistical Estimation (ESSE) method
was developed [37, 31, 32]. It uses a Karhunen-Loève (KL) expansion [25, 41]
but with time varying and adaptive basis functions. This generalized KL ex-
pansion is initialized by a multi-scale scheme [33] and evolved using stochas-
tic, data-assimilative and adaptive, Monte-Carlo ensemble schemes. The
computational cost of ESSE predictions scales as the size q of the Monte-
Carlo ensemble required, i.e. O(q). This ensemble size q varies with time
and is linked to, but a bit larger than, the evolving size of the error subspace
itself s (which gives the storage cost scaling in O(s)).

The DO equations for dynamically evolving stochastic fields [52, 51] were
derived specifically to optimally approximate the Fokker-Planck equations
and capture the dominant stochastic subspace while being computationally
tractable. The DO methodology also starts from a truncated generalized
Karhunen-Loève expansion but derives the governing equations for the mean,
the modes and their coefficients. In this derivation, a key condition is im-
posed: the rate-of-change of the stochastic subspace is dynamically orthog-
onal to the subspace itself. The DO subspace basis, i.e. the DO modes, as
well as the probability density functions (pdfs), i.e. the stochastic coefficients,
thus evolves only according to the dynamics of the system. This renders the
DO decomposition efficient and limits divergence issues. Consequently, the
computational scaling is only dependent on the number of random variables,
s, even when dealing with non-Gaussian processes: specifically, the storage
scales as O(s) and computational cost as O(s2) for Navier-Stokes equations.
The size s is in general a function of time so as to adapt to the dynamically
evolving uncertainties and boundary conditions [53]. The DO methodology,
first solved numerically in Sapsis and Lermusiaux [52], has been applied to
several Navier-Stokes flows and their stochastic dynamics has been stud-
ied, including mean-mode and mode-mode energy transfers for 2D flows and
heat transfers [51, 54]. However, the DO method has not yet been applied
to Boussinesq flows relevant for ocean studies, and the numerical challenges
of the DO decomposition for the stochastic Navier-Stokes and Boussinesq
equations have not be thoroughly examined nor resolved. This explains the
need for the present study.

In what follows, the equations for incompressible stochastic Navier-Stokes
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and Boussinesq equations are given, and their DO decomposition is outlined
(§2). In §3, the discretization in time is developed, discussing explicit and im-
plicit schemes. Importantly, we first combine DO pressure terms and define
new “pseudo-stochastic pressures” in the original continuous DO equations.
With this new definition, given that the pressure Poisson equations and the
corresponding matrix inversions often dominate the computational cost, the
cost of DO integration schemes is substantially reduced: instead of scaling
as O(s2) [53], it scales as O(s) (as long as the solution of the pressure domi-
nates the cost of the scheme). The time integration schemes are then derived.
For the mean and the modes, we employ projection methods [19], outlining
schemes of first and second order. For the stochastic coefficients, we obtain
several time-marching schemes of first to fourth order, and briefly discuss
their extension to the cases of additive and multiplicative random forcing.
The discretizations of the physical space and stochastic subspace are given in
§4. For the former, the discretization of diffusion operators is straightforward.
That of advection operators requires special attention: since the determinis-
tic DO modes have arbitrary signs, how to apply upwinding in the advection
scheme to ensure the total variation diminishing property is a key question we
investigate. For the stochastic subspace, a number of possible discretizations
are outlined, including the direct Monte-Carlo scheme. In §5, the questions
of how to deal with singular covariances and how to maintain orthonormal
modes in presence of numerical round-off and truncation errors are discussed.
For the applications in §6, a set of benchmarks are defined and utilized to
illustrate the properties of our DO numerics scheme. Specifically, a verifica-
tion benchmark based on an asymmetric Dirac-stochastic lock-exchange flow
is defined and used to test the implementation. A symmetric stochastic lock-
exchange is then employed to evaluate the new advection schemes for DO
modes. The spatial and temporal convergence is studied with a stochastic
lid-driven cavity flow. The discretization of the stochastic coefficients is ex-
amined using a flow over a square cylinder in a confined channel. Each flow
benchmark is purposely chosen to be different in part to illustrate the robust-
ness of our DO numerics. We also expect that such benchmarks can serve as
standard tests for future schemes and implementations. Lastly, conclusions
and discussions are in §7.
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2. Stochastic Discretization of Boussinesq Equations

This section defines the differential equations that we solve and then
briefly outlines the stochastic DO methodology. The temporal and spatial
discretizations are derived in the subsequent section.

The deterministic components of the partial differential equations (PDEs)
that we solve on a domain D are non-dimensional Boussinesq equations2, in
the same form as in Härtel et al [21],

∇ · u = 0, x ∈ D,
∂u

∂t
− 1√

Gr
∇2u = −∇ · (uu)−∇p+ ρeg, x ∈ D,

∂ρ

∂t
− 1

Sc
√
Gr

∇2ρ = −∇ · (uρ), x ∈ D.

(1)

The non-dimensional variables are: u(x, t) = [u, v, w], the velocity in 3D;
ρ(x, t), the density; and, p(x, t), the pressure. The vector eg is a unit-vector
in the direction of gravity, (x, t) are the non-dimensional space and time

variables, Gr = ĝ′ĥ3/2

ν̂
is the Grashof number which is the ratio of buoyancy

forces to viscous forces, Sc = ν̂/K̂ is the Schmidt number which is the
ratio of kinematic viscosity ν̂ to molecular diffusivity K̂ for the density field,
ĝ′ = ĝ (ρ̂max−ρ̂min)

ρ̂avg
is the reduced gravity, and ĥ is the vertical length-scale. In

what follows, we denote the total dynamical rate-of-change in the prognostic
eqns. (1) for velocity and density by Lu and Lρ, respectively, i.e. ∂u

∂t
= Lu

and ∂ρ

∂t
= Lρ.

The latter prognostic equation for density originates from the thermody-
namic energy equation and an equation of state (it arises from another form
of the Boussinesq approximation frequently used in ocean modeling which
retains the temperature and salinity fields as state variables, e.g. [6, 20]). We
emphasize that for problems without density-driven flows,

√
Gr ≡ Re, that

is, the square root of the Grashof number is the Reynolds number. The ap-
proach and numerical schemes that we derive in this manuscript are directly
applicable to the Navier-Stokes equations.

We are interested in solving the above equations in their stochastic form,
due to the presence of uncertainties. We thus introduce the set of random

2The dimensional variables, denoted with a hat, have been non-dimensionalized using:

t̂ = t
√

ĥ
ĝ′
; x̂ = xĥ; û = u

√

ĝ′ ĥ; ρ̂ = ρ̂min + ρ (ρ̂max − ρ̂min)
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events ω belonging to a measurable sample space Ω and consider the stochas-
tic velocity, density and pressure fields: u(x, t;ω); ρ(x, t;ω) and p(x, t;ω).
This leads to stochastic dynamical rates-of-change Lu and Lρ. If these rate-
of-changes are themselves uncertain, for example due to parameter or model
uncertainties, then they also depend explicitly on ω. In this study, we mostly
focus on uncertainties arising due to uncertain initial conditions. We define
general stochastic initial conditions as

u (x, 0;ω) = u0 (x;ω) , x ∈ D, ω ∈ Ω,

ρ (x, 0;ω) = ρ0 (x;ω) , x ∈ D, ω ∈ Ω,
(2)

and stochastic boundary conditions as

u = gD (x, t;ω) , x ∈ ∂DD, ω ∈ Ω,

∂u

∂n
= gN (x, t;ω) , x ∈ ∂DN , ω ∈ Ω,

ρ = gDρ (x, t;ω) , x ∈ ∂DDρ , ω ∈ Ω,

∂ρ

∂n
= gNρ (x, t;ω) , x ∈ ∂DNρ , ω ∈ Ω,

(3)

where the boundary conditions are separated into Dirichlet and Neumann
conditions for the velocity and density fields (pressure boundary conditions
are considered later). The resulting multivariate stochastic eqns. (1)-(3) de-
fine the problem to be solved. As in the deterministic case, specifics of the
solution depend on the initial and boundary conditions chosen.

The DO decomposition of these equations can be reconstructed from
Sapsis and Lermusiaux [52] and appears in Sapsis [51]. For convenience,
we provide an abbreviated summary of these equations in Appendix A.
In short, the DO methodology begins with a generalized Karhunen-Loève
expansion truncated to s(t) terms, where the number of terms in the ex-
pansion can generally be time-dependent [53]. The vector of prognostic
state variables Φ(x, t;ω) = [u, ρ]T is decomposed into the sum of a de-
terministic mean component Φ̄(x, t), with s deterministic modes Φi(x, t),
each mode multiplied by a stochastic coefficient Yi(t;ω). This decomposi-
tion is first substituted into into eqns. (1)-(3). The key DO condition, the
rate-of-change of the stochastic subspace is dynamically orthogonal to the
subspace itself, is then utilized. Orthogonality is defined by the spatial inner-
product 〈a,b〉D =

∫

D
∑

i(a
ibi) dD for arbitrary vectors of spatial functions

a = [a1, a2, . . .]T and b = [b1, b2, . . .]T . In general, we note that this definition
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of the inner product assumes that the different components of the vector (in
our case, the state vector) have been properly normalized [35, 54]. This is
not guaranteed from the simple deterministic non-dimensionalization used in
eqn. (1). In fact, an additional stochastic normalization is usually needed,
reflecting the stochastic initial and boundary conditions. After some math-
ematical manipulation (see Appendix A and use: [52, 51]) time-evolution
equations for the mean, modes, and stochastic coefficients, which are com-
pletely determined by the dynamics, are obtained. A major contribution of
this manuscript is to derive efficient discretizations in time and space for these
equations and to evaluate the resulting computational schemes through a set
of new benchmarks and applications for stochastic Boussinesq dynamics.

3. Semi-implicit Time Discretization

Solving the deterministic version of the system of equations (1) implicitly
in time often requires not only a large matrix inversion at each time-step,
but also iterations at each time-step to deal with the non-linear advection
terms, e.g. [13]. Discretizing their stochastic version (1)-(3) using a brute-
force Monte-Carlo scheme would have similar costs per realizations, hence a
total cost equal to that of the deterministic version but multiplied by the size
of the ensemble. If a DO decomposition is used, solving the DO system (A.5)-
(A.12) implicitly would require a matrix inversion (s2 + s + 1) times larger
than for (1) since the mean and the modes are coupled through the pressure
and non-linear advection terms (the number of pressure equations are: s2 for
pij ’s, s for pi’s and 1 for p̄). While it is possible to solve such systems, our goal
here is to discretize (A.5)-(A.12) such that the equations decouple, resulting
in a simpler and efficient solution scheme. This section describes how this
decoupling is achieved. First we explain why we treat some terms explicitly
and others implicitly. We then define new pseudo-stochastic pressures that
substantially reduce computational costs, develop Projection methods for
DO equations so as to split the velocity and pressure terms, and present
time marching schemes for the stochastic coefficients. The complete time
discretizations, combining these time marching schemes with the projection
schemes, are summarized at the end. The spatial discretizations of physical
space and of the stochastic subspace are given in Sect. §4.
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3.1. Explicitly and Implicitly Treated Terms

Much of the decoupling can be achieved by treating some terms explicitly,
resulting in a semi-implicit scheme. First, we choose to advance the stochas-
tic coefficients explicitly, because then CYiYj

and MYjYmYn can be treated as
constants when evolving the mean and the modes, and no iteration will be re-
quired between solving (A.5), (A.8) and (A.11). Somewhat similarly, we treat
the inner product terms 〈Qi,Φj〉D Φj in (A.8) explicitly to avoid iterations.
Next, we treat the non-linear advection terms explicitly, which is often done
in the Projection method community (for e.g. Guermond et al [19]). This
does impose a stability constraint on the time-step size, which is now limited
by the Courant - Friedrichs - Lewy (CFL) condition. Third, we treat the lin-
ear diffusion terms implicitly because they do not couple the equations and
the resulting diagonal-dominant matrices can be inverted efficiently. While
they could also be treated explicitly, this imposes a much harsher stabil-
ity constraint that could result in very small time steps. Thus, to partially
decouple the evolution equations, we advance the stochastic coefficients, in-
ner product terms and non-linear advection explicitly. Unfortunately, these
equations are still coupled through the pressure, which is discussed in the
next section.

3.2. The Pseudo-Stochastic Pressures

In this section we first review the explicit treatment of pressure which
results in a scheme requiring s2+s+1 solutions of stochastic Pressure Poisson
equations (PPEs) per time step. Then, we discuss our new definition of
pseudo-stochastic pressures that reduces the expense to s+1 and show that
it is a valid definition that does not change the order of accuracy.

One approach for handling the pressure, which was adopted in Sapsis and
Lermusiaux [52], is to treat it explicitly. This approach takes advantage of the
fact that the full stochastic pressure can be recovered at any time instant by
taking the divergence of (A.5) and (A.8), inserting the decomposition (A.2),
and using the divergence-free form on continuity, noting that ∇· ∂u

∂t
= 0. The

result gives the stochastic Pressure Poisson equations (PPEs) for our system

∇2p̄ = −∇ · [∇ · (ūū)− ρ̄eg],

∇2pi = −∇ · [∇ · (ūui) +∇ · (uiū)− ρie
g],

∇2pij = −∇ · [∇ · (ujui) +∇ · (uiuj)].

(4)
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A disadvantage of this explicit pressure approach is that it is expensive; to
recover the full stochastic pressure, 1 + s + s2 Poisson equations need to be
inverted, and this would often be the dominating cost of the scheme. Oceanic
applications are expected to require s ∼ O(102 − 103) [35], which would be
very expensive. Another disadvantage is that the velocity computed with an
explicit scheme will not be divergence-free after each time step.

We can reduce the number of PPEs to s + 1 by defining new pseudo-
stochastic pressures. The purpose of the pressure in divergence-free flows
is to enforce continuity. In our stochastic equations, continuity needs to be
satisfied by the mean and each modal velocity field independently (we assume
that the divergence-free continuity equation is exact, without any errors in
its form). Also, each of these velocity fields only needs a single scalar field in
order to satisfy the continuity constraint. By inspection of equations (A.5)
and (A.8), we therefore define new pseudo-stochastic pressures, which are a
combination of the mean, linear-, and quadratic-modal pressures:

˘̄p = p̄+CYiYj
pij ,

p̆i = pi +C−1
YiYj

MYjYmYn pmn.
(5)

With this definition, the quadratic modal pressures are eliminated from (A.5)
and (A.8). Thus, to evolve the mean and modes, we no longer need to solve
for the quadratic pressures. However, substituting (5) into the equation for
the evolution of the stochastic coefficients (A.11), we find that the second
term on the right-hand-side of (A.11),

〈∇pmn +∇ · (unum),ui〉D (YmYn −CYmYn)

retains the projection of the quadratic stochastic pressure terms in the sub-
space. At first, this would indicate that the quadratic modal pressures are
still needed, but for commonly used boundary conditions, the projection can-
cels, i.e. the inner product 〈∇pmn,ui〉D is zero. We refer to Sapsis et al [54]
for the proof. Because of this property, the quadratic stochastic pressure
term in (A.11) can be dropped without any penalty. Thus, by defining new
pseudo-stochastic pressures (5), we have shown that we reduced the number
of PPEs from s2 + s+ 1 to the expected s+ 1.

3.3. Projection Methods for the Mean and Modes

To obtain a numerically divergence-free velocity, we use a Projection
method. A large number of different Projection methods exist; for a re-
cent review, see [19]. Projection methods are known for excellent efficiency,
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but the proper specification of boundary conditions remains a long-standing
issue. While advances in this area are still being made [16, 55], we have cho-
sen to use the “incremental pressure-correction scheme in rotational form”
proposed by Timmermans et al [60], which has a proven temporal accuracy
[19]. We first summarize the classic versions of the scheme, then adapt them
for the mean and modes.

Classic Projection Scheme. Intermediate velocities are first solved for
using a first or second order time-accurate discretization. In both cases, the
contributions from known velocities (at previous or intermediate time steps)
are written as F(uk⋆ , ρk

⋆
), where the time instant tk

⋆
determines the order

of the scheme in time. Specifically, for first order in time, k⋆ = k − 1, and

ũk

∆t
− 1√

Gr
∇2ũk = −∇pk−1 + F(uk−1, ρk−1), x ∈ D,

ũk = gD, x ∈ ∂DD,

∂ũk

∂n
= gN , x ∈ ∂DN .

This is followed by the computation of the pressure correction, θ, so as to
satisfy continuity,

∇2θ =
∇ · ũk

∆t
,

∂θ

∂n
= 0, x ∈ ∂DD,

θ = gP , x ∈ ∂DN ,

where gP is a the prescribed Pressure difference at the boundary. With this
correction, the full pressure and velocity fields can be recovered at the next
time step, i.e.

uk = ũk −∇θk,
pk = pk−1 + θk − ν∇ · ũk.

The first-order time-accurate discretization, k⋆ = k − 1, uses the con-
tributions from known velocities (at old time steps) as F(uk−1, ρk−1). The
second-order time integration scheme is obtained by appropriately choosing
the guess values (•)k⋆ with tk−1 ≤ tk⋆ ≤ tk, and using a higher order back-
wards differencing method. For additional properties of such schemes, we
refer to Timmermans et al [60], Guermond et al [19].
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Projection Scheme for the Mean. We evolve the mean fields modifying
the classic projection method to account for the moments of the stochastic
coefficients and of the chosen explicit and implicit terms (Sect. §3.1). Starting
from the PDEs (A.5) for the mean, we obtain:

˜̄uk

∆t
− 1√

Gr
∇2 ˜̄uk =

ūk−1

∆t
− {∇ · (ūū)}k⋆ −∇ ˘̄pk

⋆

+ ρ̄k
⋆

eg

−Ck⋆

YiYj
{∇ · (ujui)}k

⋆

,

(6a)

∇2θ̄k =
1

∆t
∇ · ˜̄uk, (6b)

ūk = ˜̄uk −∆t∇θ̄k, (6c)

˘̄pk = ˘̄pk−1 + θ̄k − ν∇ · ˜̄uk, (6d)

ρ̄k

∆t
− 1

Sc
√
Gr

∇2ρ̄k =
ρ̄k−1

∆t
− {∇ · (ūρ̄)}k⋆ −Ck⋆

YiYj
{∇ · (ujρi)}k

⋆

, (6e)

with deterministic boundary conditions:

˜̄uk = ḡD,
∂θ̄

∂n
= 0, x ∈ ∂DD,

∂ ˜̄uk

∂n
= ḡN , θ̄ = ḡP , x ∈ ∂DN ,

ρ̄k = ḡDρ , x ∈ ∂DDρ ,

∂ ˜̄ρk

∂n
= ḡNρ , x ∈ ∂DNρ .

(7)

As above, k⋆ = k − 1 gives the first order time-accurate scheme, and for
second order accuracy we refer to Guermond et al [19]. We note that a main
difference between the classic scheme and the above new DO mean scheme
are the presence of the covariances and third moments of the coefficients
Yi’s. When to evaluate these is discussed in Sect. §3.4 and the order in which
the coupled differential equations for the mean, mode and coefficients are
integrated is presented in Sect. §3.5.

Projection Scheme for the Modes. As for the mean, the modes are evolved
by modifying the classic projection method for the modal PDEs (A.8). We
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obtain:

ũk
i

∆t
− 1√

Gr
∇2ũk

i =
uk−1
i

∆t
− {∇ · (uiū)}k

⋆ − {∇ · (ūui)}k
⋆ −∇p̆k⋆i + ρk

⋆

i eg

−C
−1,k⋆

YiYj
Mk⋆

YjYmYn
{∇ · (unum)}k

⋆

− 〈Qi,Φj〉k
⋆

D uk⋆

j ,

(8a)

∇2θki =
1

∆t
∇ · ũk

i , (8b)

uk
i = ũk

i −∆t∇θki , (8c)

p̆ki = p̆k−1
i + θki − ν∇ · ũk

i , (8d)

ρki
∆t

− 1

Sc
√
Gr

∇2ρki =
ρk−1
i

∆t
− {∇ · (uiρ̄)}k

⋆ − {∇ · (ūρi)}k
⋆

−C
−1,k⋆

YiYj
Mk⋆

YjYmYn
{∇ · (unρm)}k

⋆

− 〈Qi,Φj〉k
⋆

D ρk
⋆

j .

(8e)

with boundary conditions:

ũk
i = gi,D(= 0),

∂θi
∂n

= 0, x ∈ ∂DD,

∂ũk
i

∂n
= gi,N(= 0), θi = gi,P (= 0), x ∈ ∂DN ,

ρi
k = gi,Dρ(= 0), x ∈ ∂DDρ ,

∂ρi
k

∂n
= gi,Nρ(= 0), x ∈ ∂DNρ ,

(9)

where, again, the scheme is first order for k⋆ = k − 1. Since we focus on
the numerics of the DO differential equations, we assume that the stochastic
boundary forcings are null, i.e. gi’s are null in eqns. (9). We note that prob-
lems with stochastic boundary forcing can always be transformed into a prob-
lem with deterministic boundary conditions and suitable interior stochastic
forcing fields (see Chap. 5 of Sapsis [51]). In the present study, we do not
exemplify problems with stochastic forcing, but we touch on the numerical
modifications required in such cases (see §3.4 and [34] for an example of
stochastic ocean models). The time evolution of the Yi’s is discussed next.
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3.4. Time Integration Scheme for the Stochastic Coefficients

To integrate the Ordinary Differential Equations (ODEs) (A.11) for the
stochastic coefficients, we assume that all variables are available at time tk−1

and that we integrate forward to time tk.
First, we consider the case where the original governing differential equa-

tions only contain uncertain initial conditions, and no stochastic forcing.
This case corresponds to the examples and benchmarks we consider later.
It allows the use of classic time-marching integration algorithms or, in other
words, appropriate ODE solvers. We consider a given realization of a coeffi-
cient Yi at time tk−1. To integrate to time tk, we first define an approximation
to the time-rate of change of this coefficient at a given instant tk−1 ≤ t ≤ tk
as follows:

dYi
dt

∣
∣
∣
∣
Y(t)

=

〈
1√
Gr

∇2um −∇ · (umū)−∇ · (ūum)−∇p̆m + ρme
g,ui

〉k−

D
Ym(t)

+

〈
1

Sc
√
Gr

∇2ρm −∇ · (umρ̄)−∇ · (ūρm), ρi
〉k−

D
Ym(t)

− 〈∇ · (unum),ui〉k
−

D

(

Ym(t) Yn(t)−Ck−

YmYn

)

− 〈∇ · (unρum), ρi〉k
−

D

(

Ym(t) Yn(t)−Ck−

YmYn

)

, (10)

where (.)k
−

indicates that the modal quantities are estimates of their values
at time t. The numerically exact option is to choose tk− = t, while the
cheapest is to take tk− = tk−1 since at initial time, all modal quantities are
available from the previous time-step. Using this derivative definition, we
have employed several time-marching schemes of varying order to advance
the Yi in time, including: a low-storage 4th-order-accurate explicit Runge-
Kutta integrator of the form

Y (0) = Y (t), y(0) = 0,

y(m) = amy
(m−1) +∆t

dY

dt

∣
∣
∣
∣
Y (m−1),t+cm∆t

for m ∈ [1 . . . 5],

Y (m) = Y (m−1) + bmy
(m) for m ∈ [1 . . . 5],

Y (t+∆t) = Y (5),

where the coefficients am, bm, cm are given in Carpenter and Kennedy [3]; a
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2nd-accurate explicit Runge-Kutta scheme (Heun’s version)

Y (0) = Y (t) + ∆t
dY

dt

∣
∣
∣
∣
Y (t)

,

Y (t +∆t) = Y (t) +
∆t

2

{

dY

dt

∣
∣
∣
∣
Y (t)

+
dY

dt

∣
∣
∣
∣
Y (0)

}

,

and the first-order-accurate explicit Euler scheme

Y (t+∆t) = Y (t) + ∆t
dY

dt

∣
∣
∣
∣
Y t

.

For the Euler scheme, k− = k − 1. For each stage of the two RK schemes,
dY
dt

is evaluated using (10). If tk− = t, the modal quantities (the rates for the
Yi’s) are advanced to intermediate times using the modes and mean PDEs
above (which is expensive). If k− = k − 1, the mean and modal quantities
are not advanced, but the Ym(t)’s are still updated at intermediate times. Of
course, the formal order of accuracy of that scheme is limited by these rates
kept constant as will be shown later (§6). While Ck−

YmYn
could be recalculated

at each time level, our simulations showed better results if they were kept at
the same time k− as modal quantities (in that case, coefficients and subspace
remain consistent).

Second, we consider the case where the original governing equations con-
tain stochastic forcing in the form of zero-mean Wiener processes, added
linearly to the deterministic form of the PDEs (1). These stochastic forcings
then appear in the governing equation (A.11) for the stochastic coefficients.
Without entering details, the above marching schemes are then augmented
with stochastic integrals over tk − tk−1 for the contribution of these forcings
[26, 22]. If the stochastic forcings are of multiplicative form in the original
governing equations, then expectations and coupled integrals of stochastic
terms are in general also in the mean and mode equations of Sect. §3.3. This
is not considered in the present study.

3.5. Complete Time Integration Scheme

We now summarize the complete time-discretization scheme from tk−1 to
tk. Since we have decoupled the equations (6), (8), and (10), the order in
which they are solved is not important. In fact, (6), (8), and (10) could be
solved in parallel. Presently, we employ the following, serial approach:
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1. Calculate/extrapolate the statistics (CYmYn ,MYjYmYn) to the approxi-
mated times k⋆, k− and store for later use

2. Calculate/extrapolate the advection terms (∇ūū,∇ūui+∇uiū,∇uiuj)
to the approximated times k⋆, k− and store for later use

3. Advance the Yi’s using (10), and one of the ODE solvers in §3.4
4. Advance the mean ū using (6)

5. Advance the modes ui using (8).

For the modes and mean, we choose k⋆ = k− = k − 1, resulting in a first
order accurate scheme for the present applications (§6). For second order
accuracy, we would use k⋆ as defined in Timmermans et al [60], Guermond
et al [19]. For the stochastic coefficients, a higher order ODE solver may be
used in step 3 to reduce the magnitude of the integration error, but the order
of accuracy of that step is still limited by the choice of k−, and hence will be
first order accurate.

4. Spatial Physical and Stochastic Subspace Discretizations

In this section, we start by describing the 2D spatial discretization of
(6) and (8) on a structured grid (§4.1). We employ a standard conservative
finite volume discretization of second-order. Special treatment is needed for
the advection by the modes since they are basis vectors in the stochastic
subspace and thus do not have a preferential direction. We finally discuss
the discretization of the s-dimensional probability subspace in §4.2.

4.1. Spatial Discretization of the Physical Space

The domain D is discretized into a finite number of non-overlapping con-
trol volumes. Presently, we use rectangular control volumes, which form a
structured Cartesian grid that has uniform spacing in the x and y directions.
Different choices exist for the relative placement of velocity and pressure con-
trol volumes. Here we choose to use a standard staggered C-grid [13, 42],
where the u- and v-velocity control volumes are displaced half a grid-cell in
the x- and y-directions relative to the pressure and density control volumes,
respectively.

4.1.1. Diffusion Operator

The diffusion operator ∇2 is discretized by using central boundary fluxes.
That is, for the field φ at the center (x, y) of a control volume boundary, we
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have the following boundary flux in the x-direction (similar for y-direction)

∂φ

∂x

∣
∣
∣
∣
(x,y)

=
φ(x+ ∆x

2
, y)− φ(x− ∆x

2
, y)

∆x
,

which, on a structured grid, is exactly equivalent to the second-order accurate
central finite-difference scheme. For the advection operator, a simple second-
order central flux is however well-known to be unstable (e.g. [4]), and needs
more careful treatment, as described next.

4.1.2. Advection Operator

For advection by a velocity component u, we use a standard Total Vari-
ation Diminishing (TVD) scheme, with an monotonized central (MC) sym-
metric flux limiter [61]. The scheme can be written for a variable η as:

F (ηi− 1
2
) = ui− 1

2

ηi + ηi−1

2

−
∣
∣
∣ui− 1

2

∣
∣
∣
ηi − ηi−1

2

[

1−
(

1−
∣
∣
∣
∣
ui− 1

2

∆t

∆x

∣
∣
∣
∣

)

Ψ(ri− 1
2
)

]

,
(11)

where the MC slope limiter Ψ(r) is defined as

Ψ(r) = max

{

0,min

[

min

(
1 + r

2
, 2

)

, 2r

]}

,

and the variable r as

ri− 1
2
=

[
1
2

(

ui− 1
2
+
∣
∣
∣ui− 1

2

∣
∣
∣

)

(ηi−1 + ηi−2) +
1
2

(

ui− 1
2
−

∣
∣
∣ui− 1

2

∣
∣
∣

)

(ηi+1 + ηi)
]

ui− 1
2
(ηi − ηi−1)

,

where ui− 1
2
is used without interpolation for the density advection while a

second-order central scheme is used for the non-linear u and v advection. For
more information about TVD schemes, we refer to [39].

A possible issue with using this scheme for DO equations arises from the
realization that the absolute value of the velocity |u|, is a function of the
full velocity ū + Yiui which, depending on the specific realization, may be
either positive or negative; in other words, |u| is positive, but stochastic.
Fortunately, we never need the full velocity to evolve the mean and modes
in (A.5) and (A.8) (see also (6) and (8)). In fact, in the case of the mean
velocity ū, its absolute value is deterministic. Therefore, the advection of
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the mean velocity by the mean velocity ū · ∇ū, and the advection of the
velocity modes by the mean velocity ū ·∇ui can use the classic TVD method
without modification. Advection of the mean by the modes ui · ∇ū and of
the modes by the modes ui · ∇uj , however, need additional consideration.
Similar statements apply for the advection of the mean density and of the
density modes by either the mean velocity (classic scheme is fine) or by the
modes (additional considerations are needed).

Here we propose three arguments for three different advection schemes
that can be used for these “advection by the modes” terms. First, if we
examine the equations from the perspective of the numerical scheme only, a
preferential advection direction will be present. In this case we simply use
the TVD scheme unmodified. Next, we argue that, since the stochastic coeffi-
cients are zero mean, then the probability of Yi < 0 is equal to the probability
that Yi > 0. This suggests that ui should not have a preferential direction
of propagation, in which case a central differencing advection scheme (CDS)
could be used. Last, recognizing that the CDS scheme may cause oscillations,
we still wish to limit the flux in some way. A direct approach, then, is to
use the TVD scheme in both directions, and average the results. That is,
the present sign of the modal velocity is used first to calculate the advective
terms, then the negative of the modal velocity is used, and the two results
are averaged. We call this the symmetric TVD or TVD* scheme. Thus, we
have three potential schemes for advection by the modal velocities.

The three proposed schemes are tested in §6.2, where we find that the
TVD* scheme performs best. Improvement on this scheme is still possible,
since we also find that very small oscillations can remain. A proper flux-
limited advection scheme may be derived by looking at the characteristics
of the hyperbolic parts of the full system. However, since the system has
(s+ 1)× d equations, where d is the dimension of the problem, this analysis
is left for future research.

4.2. Discretization of Stochastic Subspace

The stochastic coefficients exist in an s-dimensional space, which can be
potentially large, from O(10) to O(103) based on our experience. In most
cases, there is also no strict bound on the value that a stochastic coeffi-
cient can take. Thus, evenly dividing the s-dimensional space is not feasible.
To discretize the uncertainty subspace, other schemes are thus used. They
include: (a) non-uniform discretizations of the subspace, either using struc-
tured or unstructured grids, possibly using schemes based on finite-volumes
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or finite-elements [18, 43]; (b) solve a discretized version of the PDEs for the
probability densities of the coupled s coefficients, e.g. solve Fokker-Planck
equations [52]; (c) parameterize the probability space, either using Polyno-
mial Chaos [18, 69, 44, 15], in our case extended to time-dependent polyno-
mials [e.g. 17], or other parameterizations such Gaussian mixtures [46, 58] or
particle filters [9], and (d), use a Monte-Carlo approach [37, 32].

We have employed a few of these schemes. In the present manuscript,
we only illustrate the use of a Monte-Carlo scheme using for each realization
the time-integration described in Sect. §3.4. In general, the expected error

for the mean and covariance is of O
(

1√
q

)

, where q is the number of samples.

For efficient results, it is important that samples are generated in regions
where the probability is relatively high and importance sampling [9] can be
employed. At initial time t0, the distribution of the Yi is generated using the
specified initial probability density given by eqns. (2). Here, our focus is on
numerical schemes and we restrict ourselves to simple distributions such as
Gaussians or Dirac functions for numerical tests.

Thus, we discretize Yi by generating q samples, and forming a q×s dimen-
sional matrix Yr,i. Each row in Yr,i corresponds to one of the samples, and
each column corresponds to one of the modes. During the time-integration
step, each sample of Yr,i is then advanced using (10), which is done efficiently.
In all cases computed so far q, can be large, e.g.∼ O(104−105), but still suffi-
ciently small such that advancing (10) for every sample is not the dominating
cost of the whole scheme.

A drawback to this Monte-Carlo approach is that rare events will not
be captured unless a very large number of samples are used. Alternative
methods, such as Gaussian mixtures [57, 58] or other approaches mentioned
above can then be used as an alternative.

5. Implementation Details

In this section we describe selected implementation details that arise due
to numerical issues. In particular, we discuss how to deal with possibly
poorly conditioned covariance matrices in the stochastic subspace, as well
as the orthonormalization of the modes and decorrelation of the stochastic
coefficients.
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5.1. Dealing with a Singular Covariance Matrix

The covariance matrix may be singular or poorly conditioned if one or
more of the stochastic coefficients have zero or very small variance com-
pared to other modes. This situation can arise naturally if a problem has
deterministic initial conditions, with uncertainty introduced through forcing,
boundaries, parameters, numerical uncertainties, or other causes. In this ex-
ample, the initial covariance matrix is simply zero, for which the inverse is
not defined. Special treatment is thus needed for such cases since the inverse
of the covariance matrix is required in (8).

Fortunately, this problem is also common in data assimilation [1, 37]
and is relatively easily resolved using generalized Moore-Penrose inversions.
First, in the particular case of the DO equations, the inverse of the covariance
matrix is multiplied by the third moments in (8),

C
−1,k⋆

YiYj
Mk⋆

YjYmYn
, (12)

which, for most physical processes, goes to zero for the eigenvalues of Ck⋆

YiYj

that go to zero. To obtain a numerically stable estimate of the inverse of the
covariance matrix, we simply perform a generalized or pseudo inverse, setting
the singular values less than a defined tolerance equal to zero or to that given
tolerance. This results in a stable numerical simulation, as exemplified for
the lock-exchange validation benchmark in §6.1.

5.2. Orthonormalization

The DO equations require orthonormal modes, therefore it is important to
maintain this property numerically when integrating the equations over time.
Starting with initially orthonormal modes, orthonormality is maintained over
time when applying the DO condition in continuous mathematics, since

∂ 〈Φi , Φj〉D
∂t

=

〈
∂Φi

∂t
, Φj

〉

D
+

〈

Φi ,
∂Φj

∂t

〉

D
= 0,

where the DO condition
〈

Φi ,
∂Φj

∂t

〉

D
= 0, ∀i, j ∈ [1, 2, . . . , s] was used.

At the discrete level, this property is maintained, but only in a weak sense,
up to truncation and round-off errors. Therefore, even if the modes are
orthonormal at a given time-step, not all integration schemes over the next
time-step will conserve the discrete orthonormality. To see this, consider the
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inner product at time tk, integrated from time tk−1, at first exactly (without
any discretization):

〈Φi , Φj〉kD =
〈
Φk

i , Φ
k
j

〉

D ,

=

〈

Φk−1
i +

∫
∂Φi

∂t
dt , Φk−1

j +

∫
∂Φj

∂t
dt

〉

D
,

=

〈

Φk−1
i +∆t

∂Φi

∂t
, Φk−1

j +∆t
∂Φj

∂t

〉

D
,

=
〈
Φk−1

i , Φk−1
j

〉

D +∆t

〈

Φk−1
j ,

∂Φi

∂t

〉

D

+∆t

〈

Φk−1
i ,

∂Φj

∂t

〉

D
+∆t2

〈
∂Φj

∂t
,
∂Φi

∂t

〉

D
,

= δij ,

where we have used ∆t∂Φi

∂t
=

∫
∂Φi

∂t
dt. Now, a pth-order-accurate discrete

approximation of ∂Φi

∂t
will have an associated error, εki , of O(∆tp). Assuming

that the spatial inner product is computed exactly, this error in the time
integration leads to an error, Ek

ij , in 〈Φi , Φj〉k,discreteD = 〈Φi , Φj〉kD + Ek
ij at

time k. To find the magnitude of this time discretization, Ek
ij , we assume

to start with an exactly orthonormal inner product at tk−1, then by discrete
integration to tk we have:

δij
︷ ︸︸ ︷

〈Φi , Φj〉kD +Ek
ij =

δij
︷ ︸︸ ︷
〈
Φk−1

i , Φk−1
j

〉

D +∆t

0 numerically using DO condition
︷ ︸︸ ︷
〈

Φk−1
j ,

∂Φi

∂t
+ εki

〉

D

+∆t

0 numerically using DO condition
︷ ︸︸ ︷
〈

Φk−1
i ,

∂Φj

∂t
+ εkj

〉

D

+∆t2
〈
∂Φj

∂t
+ εkj ,

∂Φi

∂t
+ εki

〉

D
,
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Ek
ij = ∆t2

0 because exact
︷ ︸︸ ︷
〈
∂Φj

∂t
,
∂Φi

∂t

〉

D
+∆t2

〈

εkj ,
∂Φi

∂t

〉

D

+∆t2
〈

εki ,
∂Φj

∂t

〉

D
+∆t2

〈
εki , ε

k
j

〉

D ,

∼ 2∆t2O(∆tp)O(∆t−1) + ∆t2O(∆t2p),

∼ O(∆tp+1).

Therefore, unless the discrete time rates of change are also made orthogonal,
or the sum of the three terms above are discretely equal to zero (assuming the
first one is zero), the error in the orthonormality will always be ∆t smaller
than that of the numerical scheme.

The orthonormality can be corrected either directly by enforcing that
〈

∂Φj

∂t
+ εkj ,

∂Φi

∂t
+ εki

〉

D
= 0 numerically during time integration, or indirectly

by enforcing that 〈Φi , Φj〉kD + Ek
ij = δij numerically at the end of a time

step. In either case, it is important to remember that the summation Yr,iΦi

produces specific realizations, and changing the basis without modifying the
coefficients will change the specific realizations. Because Φi and Yr,i are
linked, various schemes for performing the re-orthonormalization exist. These
schemes are briefly discussed in Appendix B.

6. Numerical Applications

In this section we present four benchmarks used to verify and study the
implementation described above. To ensure that the numerical implemen-
tation is solving the desired equations, we compare the stochastic code to a
deterministic code (§6.1) for a version of the lock-exchange dynamical prob-
lem [21]. Next, we examine the different advection schemes proposed for DO
equations in §4.1.2, using a symmetric version of the lock-exchange problem
(§6.2). Then, we study the spatial and temporal convergence using the lid-
driven cavity flow (§6.3). Finally, we study the discretization of the stochastic
coefficients using the flow over a square cylinder in a confined channel (§6.4).

For evaluating the errors in the benchmarks, we use the L2 norm. At
a single time instance, the norm is ‖Φ‖2 =

√
〈Φ,Φ〉D for the whole state

vector, or ‖φ‖2 =
√∫

D φ
2dD for a single component. For the convergence
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Figure 1: An initial barrier separating light and heavy fluid is removed, and the flow
is allowed to evolve. Uncertainty in our studies originates from not knowing the initial
density differences between the fluids. This benchmark is used to verify the correctness of
the implementation, not the DO methodology.

studies (§6.3) we also integrate over time, using ‖Φ‖T2 =
√
∫ T

0
〈Φ,Φ〉D dt for

the state vector, and ‖Yi‖2 =
√

∫ T

0
E [YiYi] dt for the stochastic coefficients.

6.1. Lock-Exchange Verification Benchmark

The purpose of this benchmark is to verify the numerical implementation.
For example, in theory, the definition of the stochastic pseudo-pressure does
not introduce any additional error in the projection method. However, it is
necessary to verify that its numerical implementation is sufficiently accurate,
and that it is still solving the correct equations. Ideally, problems with
analytical solutions should be used to verify a code, however, constructing a
valid analytical solution for evolving (6),(8), and (10) with multiple stochastic
modes and coefficients is neither trivial, nor does it lend itself to compact
expressions. In this section we address this problem by defining a numerical
benchmark that can be used to verify the numerical implementation. We
then run this benchmark for our implementation.

6.1.1. Lock-Exchange Verification Benchmark: Setup

We verify our stochastic DO code by comparing it to a deterministic NS
code which has been thoroughly verified [36]. This deterministic code uses
the same second-order Finite volume scheme and first order backwards dif-
ference Projection method as the stochastic code. While the stochastic code
is inherently more complicated with more equations, the major differences
are in the advection scheme used for advection by the stochastic modes (see
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Figure 2: Initialization of the lock-exchange problem (density field: mean, mode 1 and
marginal pdf, modes 2 and 3). The initial velocity is zero, and stochasticity is introduced
through the first (of three) orthonormal modes for the density. The vertical length scale

used for non-dimensionalization is the half-height of the channel (ĥ = 1). Initializing
with four stochastic samples for the first mode, Yr,1 = [−0.18, − 0.06, 0.04, 0.20]T , we
have four possible initial conditions corresponding to ∆ρ = [1, 0.84, 0.74, 0.62]. The two
remaining modes are initialized as described in the text, and do not introduce additional
stochasticity.

§4.1.2 and §6.2), and that we also have to accurately evolve the stochastic
coefficients.

Since the deterministic code can be used non-intrusively with the Monte-
Carlo method to generate an ensemble of realizations, we can compare re-
alizations from the stochastic code directly to the deterministic realizations.
To avoid generating a large ensemble, we prescribe a discrete pdf for this
stochastic benchmark. This benchmark (Fig. [1]) is based on the lock-
exchange problem [21], where uncertainty is introduced by prescribing four
possible density differences. That is, consider a lock separating two miscible
fluids of different densities. While the difference between the densities are
unknown, it is known that four possibilities of equal probability exists. An-
other way to look at this benchmark is that we are, essentially, using a single
run of the stochastic code to try and replicate four different deterministic
runs. While not a practical use of the DO method, it is a challenging and
useful benchmark problem for verifying its numerical implementation.

To capture all of the uncertainty, three DO modes (s = 3) are needed for
the stochastic simulation. Four density difference were chosen because three
DO modes is the minimum number required to have full energy interactions
between the mean and modes of the DO simulation [52, 51]. Also, to fully
verify the implementation, we need to ensure that the initial pdf is non-
symmetric so that the third moments are non-zero (in (10) for example).

General setup: The Schmidt number is kept constant, Sc = 1, and we
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present results for two Grashof numbers, Gr = 1.25× 106 and Gr = 4× 104,
(although more were studied). The four possible density differences of equal
probability are ∆ρ = [1, 0.84, 0.74, 0.62], with the initial density profile
prescribed by

ρ(x, y, t=0) =
∆ρ

2
tanh(2x/lρ),

where we take lρ = 1/64. Initially the velocity is zero everywhere, and free-
slip boundary conditions are used at the boundaries of the domain (Fig. [1]).
The domain is discretized using ∆x = ∆y = 1/256, and ∆t = 1/512, which
is sufficient resolution for these Grashof numbers [21].

Mean initialization: The mean density profile (Fig. [2]-a) uses the hyper-
bolic tan function specified above with the mean density difference ∆ρ = 0.8.
The mean pressure and velocity are zero everywhere, initially.

Mode initialization: The density profile for the first mode is the normal-
ized hyperbolic tan profile above (Fig. [2]-b). The two remaining modes are
arbitrary, since they do not introduce initial uncertainty (see below). They
are set to:

ρ2(x, t=0) =

{

(∆ρ− |ρ̄|)sign(ρ̄)| sin(πy)| if (∆ρ− |ρ̄|)sign(ρ̄) sin(πy) > 0

0 otherwise,

ρ3(x, t=0) =

{

(∆ρ− |ρ̄|)sign(ρ̄)| sin(πy)| if (∆ρ− |ρ̄|)sign(ρ̄) sin(πy) < 0

0 otherwise,

where these are orthonormalized numerically as described in §5.2. The pres-
sure and velocity for all modes are zero everywhere, initially.

Stochastic coefficient initialization: The discrete probability density func-
tion for the first stochastic coefficient is specified by using four samples
Yr,1 = [−0.18, − 0.06, 0.04, 0.20]T , (Fig. [2]-c). The next two modes
do not introduce additional uncertainty because we specify correlated sam-
ples, Yr,2 = Yr,3 = ǫ · [−0.18, −0.06, 0.04, 0.20]T , where ǫ is a small constant
chosen such that

∑

i Var(Yr,i) = Var(Yr,1) numerically. This means that the
inverse of the Covariance matrix will be very ill-conditioned (or numerically
singular), so the pseudo-inverse is required during the initial stages of the
simulation (see §5.1). Also, because the pdf is discrete, we calculate the mo-
ments using the biased estimator CYiYj

≈ 1
q

∑

r Yr,iYr,j, instead of the usual

unbiased estimator CYiYj
≈ 1

q−1

∑

r Yr,iYr,j. The initial fields and pdf are

shown in Fig. [2].
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6.1.2. Lock-Exchange Verification Benchmark: Results and Discussion

The outputs from the stochastic run are reported in Fig. [3] for both
Grashof numbers. Comparisons with the deterministic runs are shown in Fig.
[4] and Fig. [5] for Gr = 4× 104 and Gr = 1.25× 106, respectively. Finally,
the evolution of the differences between the stochastic and deterministic runs
for both Grashof numbers are shown in Fig. [6].

We see excellent agreement between the stochastic realizations and the
deterministic runs (Fig. [5]-Fig. [6]) for this challenging benchmark. Partic-
ularly, for the lower Grashof number flow, the local error is less than 0.2%
everywhere. It is non-trivial that the complex DO implementation is capa-
ble of reproducing multiple deterministic runs in a single simulation. Thus,
based on these results and many other tests (not shown), we conclude that
our implementation is correct, that is, we are solving the intended equations.

The growth of differences between the deterministic and stochastic sim-
ulations (Fig. [6]) should be explained by the main differences between the
stochastic and deterministic solvers, in particular the advection schemes, and
the evolution of the stochastic coefficients. We found that the magnitude of
the differences over time is larger for coarser space and time resolution runs.
This suggests the error is due to spatial and/or temporal truncation error.
The advection scheme does not contribute significantly to the error at the re-
ported resolution, since using a CDS advection scheme instead of the TVD*
scheme for the stochastic modes did not change the reported results signifi-
cantly. Reducing the time-step to ∆t = 1/1024 reduced the error at the final
time from ∼2.1% to ∼1.05% for the higher Grashof number flow. This indi-
cates that the error is dominated by a temporal truncation compounded error
of approximtely O(∆t) (as expected, see §6.3). The primary source of this
compounded error may be from the evolution of the stochastic coefficients
and/or the modes.

We examine the errors more closely to determine the primary source of
the small numerical errors. Note that the density differences are either a bit
too small (first realization in Fig. [5]) or a bit too large (last three realizations
in Fig. [5]), causing phase errors as observed around the density interface.
These phase errors can be caused by small errors in the relative magnitudes of
the stochastic coefficients. We found that different orthonormalization strate-
gies (§5.2), which affect the relative magnitudes of the stochastic coefficients,
can have also impact the magnitude of the phase errors. In particular, when
using a Gram-Schmidt orthonormalization, the average difference was greater
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Figure 3: The DO mean, modes at non-dimensional time t = 5, and evolution of stochastic
coefficients. For Gr = 1.25 × 106 (top) and Gr = 4 × 104 (bottom). The higher-Gr flow
has sharper gradients, and its coefficients are larger than the lower-Gr flow. Streamlines
shown over density in color.
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row) for Gr = 4 × 104 (resolution 256×256 with 512 × 5 time-steps). The stochastic
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than 3% (or 50% worse) for the high Gr case at the final time. Also, consid-
ering that the larger Gr number flow has larger stochastic coefficients (Fig.
[3]) than the lower Gr flow, the same relative error in the stochastic coeffi-
cients would lead to a larger phase error (observed when comparing Fig. [4]
to Fig. [5]). Thus, this benchmark’s results indicate that the primary source
of error originates from the time evolution of the stochastic coefficients.

In summary, using the proposed benchmark, we have verified the correct
implementation of the stochastic code. Also, based on the results, we suggest
that the error is dominated by the temporal truncation error of the evolution
equations for the stochastic coefficients. This indicates that the accuracy of
the scheme will benefit most from improving the temporal discretization for
problems that require long time integration.

6.2. Effect of Advection Scheme

The purpose of this benchmark is to test the three different advection
schemes proposed (§4.1.2). We again use a version of the lock-exchange
problem because the sharp density interface will highlight numerical oscil-
lations. We modify the problem by introducing symmetry, which should
be maintained numerically. Finally, for simplicity we only consider a single
stochastic mode with a bimodal continuous pdf.

6.2.1. Effect of Advection Scheme: Setup

General setup: The Schmidt number is kept constant, Sc = 1, and we
present results for Gr = 1.25× 106. Initially the velocity is zero everywhere,
and free-slip boundary conditions are used at the boundaries of the domain
(Fig. [1]). The domain is discretized using ∆x = ∆y = 1/64, and ∆t =
1/256. A lower resolution is used here compared to the cases in §6.1 in order
to highlight the symmetry errors and numerical oscillations.

Mean initialization: The mean density, pressure, and velocity are all zero
everywhere, initially.

Mode initialization: The density profile for the mode is the same normal-
ized hyperbolic tan profile used in §6.1. The pressure and velocity for this
mode are zero everywhere, initially.

Stochastic coefficient initialization: The bimodal Gaussian continuous pdf
is represented by 10,000 samples. To ensure symmetry in the problem, the
pdf of the mode must be carefully specified. We initialized the pdf by first
generating 2,500 samples (Yr2500) from a zero mean Gaussian distribution with
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Figure 7: Symmetric lock-exchange problem (Gr = 1.25×106) with grid resolution 64×64
and ∆t = 1/256 using various advection schemes for the modes. Only the stochastic den-
sity is non-zero initially, with a bi-modal pdf(top row). The two most extreme realizations
(largest and smallest stochastic coefficients) are plotted in each case (right column). Our
new averaged TVD* scheme only has minor oscillations and retains symmetry (third row),
while the CDS advection scheme suffers from large oscillations (white dashed circles, sec-
ond row), and the one-sided TVD scheme loses symmetry (red dashed circles, last row).
Streamlines shown over density in color.
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standard deviation σ = 0.01e1 ≈ 0.027. Next these samples are duplicated

Yr,1 =

[

Yr2500 −
1

2
, − Yr2500 −

1

2
, Yr2500 +

1

2
, − Yr2500 +

1

2

]T

to yield 10,000 samples that need to be evolved. These initial conditions can
be seen in the first row of Fig. [7].

6.2.2. Effect of Advection Scheme: Results

The result of this simulation is shown in Fig. [7] for the various advection
schemes. While the CDS scheme maintains symmetry of the mean, modes,
pdf, and realizations, some clear numerical oscillations are present, particu-
larly evident in the realizations. While there are no oscillations in the TVD
scheme, it clearly loses symmetry in the mean, modes, pdf, and realizations,
as can be seen (with aid of the dashed guide lines) in Fig. [7]. The TVD*
scheme only develops minor oscillations, which can be barely detected when
examining the realizations, and completely retains symmetry. Thus, the new
TVD* scheme is the preferred scheme among the four.

Initially, we can represent all density realizations exactly with only one
mode. However, as different densities evolve at different rates, one mode is
not sufficient to represent this uncertainty. Hence, spurious gradients appear
in the reconstructed realizations. We purposely chose only one mode to
illustrate this limitation of methods that would keep the number of modes
fixed, which we normally do not [53].

In summary, we have concluded that the TVD* scheme performs ade-
quately, and we demonstrated that the DO implementation can reproduce
vastly different realizations for a problem.

6.3. Numerical Convergence Analysis

The purpose of this benchmark is mainly to show that the implemented
scheme is converging. Here we use the classical lid-driven cavity flow, and
examine the numerical convergence under spatial and temporal refinement of
each component separately. This benchmark does not have a variable density,
and so we report the Reynolds number instead of the Grashof number. We
also completed convergence tests with density, with results analogous to those
presented below.
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Figure 8: The lid-driven cavity flow is a classical benchmark used to verify convergence
of numerical implementations. Uncertainty for this case will be introduced through the
initial conditions.

6.3.1. Numerical Convergence Analysis: Setup

General setup: We present results for a Reynolds number of Re = 500,
although other Reynolds number cases (Re ∈ [100, 1000]) were also stud-
ied, giving similar results. The flow is driven by a deterministic bound-
ary condition at the top of the enclosed box Fig. [8], with no-slip velocity
boundary conditions, and uncertain initial conditions. To perform the con-
vergence study, a reference solution is created using ∆x = ∆y = 1/512, and
∆t = 1/4096, which is sufficient resolution at this Reynolds number [12, 11].
We examine the difference between the reference solution, and simulations
with coarser space and time resolutions by interpolating (using splines) the
fine solution onto the coarse resolution grid, and taking the L2 norm over the
interior of the domain, DI ∈ [0.25, 0.75]× [0.25, 0.75], to avoid the boundary
condition singularities at the top two corners.

Mean initialization: For a challenging case, the mean velocity and pres-
sure are initially zero, everywhere.

Mode initialization: The velocity modes are initialized by specifying the
stream function

ψM,N(x, y) = CM,N sin(πx) sin(πMx) sin(πy) sin(πNy),

where CM,N = 1
π

√

N2+1
16

(
3
2

)δ(N−1)
+ N2+1

16

(
3
2

)δ(M−1)
is the normalization con-

stant; the delta function δ(x) takes the value 1 if x = 0 and 0 otherwise. The
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velocity modes are then specified as

ui = − ∂

∂y
ψ(M,N)i , vi =

∂

∂x
ψ(M,N)i ,

where (M,N) = {(1, 1), (1, 2), (1, 3)}. The initial pressure for the modes is
specified as zero everywhere.

Stochastic coefficient initialization: The pdf is created using 5,000 samples
of zero mean Gaussian distributions with variances Var(Yr5000,i) = e(1−Mi−Ni).
The Yi samples are then created using a similar procedure used in §6.2

Y ∗
r,i =

[
Yr5000,i
−Yr5000,i

]

.

To ensure that the final generated samples have numerical variances exactly
as specified, we correct the samples based on the numerically calculated vari-
ance

Yr,i = Y ∗
r,i

√
Var(Yr5000,i)

√

Varq(Yr,i)
,

where Varq(ar,i) =
1

q−1

∑q
r=1 ar,i is the calculated sample variance. The ini-

tialization for this problem can be seen in the first row of Fig. [9].

6.3.2. Numerical Convergence Analysis: Results and Discussion

Three time snapshots of the reference solution are shown in Fig. [9].
While the marginal seems to remain approximately Gaussian, the sample-
scatter diagram clearly shows the very non-Gaussian behavior for this bench-
mark. Also, we confirm from Fig. [10] that the variances of the modes are
decreasing, which is expected since this problem has a deterministic steady-
state solution. Thus, the stochastic solution is behaving as expected.

Next, examining the convergence, we see that the numerical error for
all components decrease with temporal and spatial refinement. The conver-
gence is near optimal at large grid sizes for all variables. These results with
the velocity components separated are tabulated in Table [1] and Table [2],
which also shows that the stochastic coefficients are converging optimally.
Even though a fourth-order RK method is used to advance the stochastic
coefficients, the total-DO convergence is first order (based on choices made
in §3.5). Thus, we observe near-optimal convergence for all variables, which
suggests that the implementation is correct.
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Figure 9: Evolution of reference solution for the lid-driven cavity flow (Re = 500) with
stochastic initial conditions over time (resolution 512×512 with 4096 × 5 time-steps).
This case demonstrates that the DO representation with our implementation is able to
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. Nt Mean Mode 1 Mode 2 Mode 3
‖e‖2 O ‖e‖2 O ‖e‖2 O ‖e‖2 O

P 2048 1.0e-04 1.6 2.1e-04 1.6 1.1e-03 1.6 8.4e-04 1.6
1024 3.0e-04 1.2 6.1e-04 1.2 3.2e-03 1.2 2.5e-03 1.2

u 2048 9.7e-05 1.6 1.3e-04 1.6 5.7e-04 1.6 7.8e-04 1.6
1024 2.9e-04 1.2 3.9e-04 1.2 1.7e-03 1.2 2.3e-03 1.2

v 2048 9.0e-05 1.6 1.7e-04 1.6 6.4e-04 1.6 8.6e-04 1.6
1024 2.7e-04 1.2 5.0e-04 1.2 1.9e-03 1.2 2.5e-03 1.2

Yi 2048 . . 1.1e-04 1.6 1.8e-04 1.6 3.6e-04 1.6
1024 . . 3.3e-04 1.2 5.4e-04 1.2 1.1e-03 1.2

Table 1: Temporal convergence of lid-driven cavity flow. Tabulated is the error (e =
‖φref − φNt

‖2) between the reference solution and the solution using ∆t = 1/Nt, and the
approximate order of convergence O. This is tabulated for the grid size, ∆x = 1/512.

6.4. Stochastic Convergence

The purpose of this benchmark is to further assess the performance of the
code, demonstrate that a large number of modes can be used, and study the
effect of the stochastic discretization. Here, we extend the classic shedding of
vortices by a uniform flow as it encounters a symmetric obstacle to stochastic
DO computations. Since this problem is symmetric, the stochastic solution
should also be symmetric. Numerical or artificially introduced perturbations
initiate the non-symmetric laminar shedding of vortices. However, if these
perturbations are symmetric, there should be no preferential direction for
vortex shedding. Thus, we expect that a carefully initialized simulation of
the stochastic solver should be able to capture both shedding directions, and
this expectation presents an excellent opportunity to assess performance. We
also quantify the effects on accuracy of the number of stochastic samples, and
their time-order of integration.

6.4.1. Stochastic Convergence: Setup

The benchmark is an open flow in a frictionless pipe with a square cylin-
drical obstacle (Fig. [12]), which is a classic test for deterministic flow solvers.

General setup: We present results for a Reynolds number of Re = 100,
although other cases were also studied. The flow is driven by a determin-
istic uniform inlet boundary condition (left of domain), with slip velocity
boundary conditions at the top and bottom, open boundary conditions at
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. Nx Mean Mode 1 Mode 2 Mode 3
‖e‖2 O ‖e‖2 O ‖e‖2 O ‖e‖2 O

P 256 4.0e-05 2.5 1.5e-04 2.2 3.7e-04 2.6 6.9e-04 2.3
128 2.2e-04 2.5 6.9e-04 2.0 2.3e-03 2.4 3.5e-03 2.0
64 1.2e-03 2.3 2.7e-03 2.1 1.2e-02 2.3 1.4e-02 1.5

u 256 4.7e-05 2.4 1.2e-04 2.4 3.1e-04 2.2 8.3e-04 2.4
128 2.4e-04 2.4 6.4e-04 2.4 1.5e-03 2.1 4.4e-03 2.3
64 1.3e-03 2.2 3.3e-03 2.3 6.2e-03 2.2 2.1e-02 2.0

v 256 4.5e-05 2.4 1.3e-04 2.4 3.3e-04 2.2 9.2e-04 2.4
128 2.4e-04 2.2 6.9e-04 2.3 1.6e-03 2.1 4.9e-03 2.3
64 1.1e-03 2.2 3.4e-03 2.3 6.5e-03 2.2 2.4e-02 2.1

Yi 256 . . 1.1e-04 2.4 1.6e-04 2.4 2.9e-04 2.4
128 . . 5.9e-04 2.2 8.7e-04 2.3 1.6e-03 2.3
64 . . 2.7e-03 1.9 4.2e-03 2.1 8.1e-03 1.8

Table 2: Spatial convergence of lid-driven cavity flow. Tabulated is the error (e = ‖φref −
φNx

‖2) between the finest (512× 512) and present (Nx ×Nx) grid, and the approximate
order of convergence O. This is tabulated for the smallest time step, ∆t = 1/4096.

Figure 12: Laminar vortex shedding over a square cylinder in a channel. Here uncertainty
originates from the initial conditions and uncertain vortex shedding: depending on the
perturbation, the first vortex could either be shed above or below the cylinder. Within
a stochastic framework, however, if uncertainties are initially symmetric, the mean and
modes should remain symmetric, and this is evaluated with our DO numerics.
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the outlet, and symmetric uncertain initial conditions. All simulations use a
resolution of 336 × 63 in space, and 63 × 40 in time. We choose to integrate
until t = 40 because this allows the statistics to reach steady values. At
t = 40 the mean velocity has traveled through the domain 2.5 times.

Mean initialization: The mean velocity and pressure are initially zero,
everywhere.

Mode initialization: While the exact shape of the initial stochastic per-
turbations are not important, since they are advected out of the domain, it
is important that the perturbations are symmetric. We initialize the velocity
modes by specifying the stream function

ψM,N(x, y) = CM,Nsin(πx/a)sin(πMx/a)sin(πy/b)sin(πNy/b),

where CM,N is the normalization constant (as in §6.3), and a = 16, b = 3
are the width and height of the domain respectively. The velocity modes are
then specified as

ui = − ∂

∂y
ψ(M,N)iBM , vi =

∂

∂x
ψ(M,N)iBM ,

where

(M,N) = {(1, 1), (2, 1), (1, 2), (3, 1), (1, 3), (2, 2), (4, 1), (1, 4), (3, 2), (2, 3)},

and BM is a smoothing function created numerically from the domain mask.
BM is created from the mask by iteratively averaging each control volume by
its own value and its four neighbors for 2

∆y
iterations. That is, at iteration k

Bk
M(i, j) =

1

5

(
Bk−1

M (i, j) + Bk−1
M (i− 1, j) + Bk−1

M (i, j − 1)

+Bk−1
M (i+ 1, j) + Bk−1

M (i, j + 1)
)
.

The initial pressure for the modes is specified as zero everywhere.
Stochastic coefficient initialization: To ensure initial symmetry, the sam-

ples for the stochastic coefficients are created using the same procedure as in
§6.3, using the variances V ar(Yr,i) = e(2−Mi−Ni) (note the difference of +1 in
the exponential from §6.3). The reference solution uses 105 samples for the
stochastic coefficients, and a 4th order RK time integration scheme (§3.5).
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Figure 13: Mean field and first 5 modes with marginal pdfs at final non-dimensional time
T=40 for Re=100, and the evolution of the mean, 〈u,u〉

D
and stochastic energy, Var(Yi),

for the reference solution (resolution 63×336 with 63 × 40 time-steps). Streamlines shown
over pressure in color.. Our scheme and implementation is able to retain symmetry for
the most important first four modes.
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Figure 14: As in Fig. [13], but showing two realizations where the vortex is shed in
opposite directions. The colorbar for the pressure is as on Fig. [13].

6.4.2. Stochastic Convergence: Results and Discussion

For the reference solution, we observe that our scheme maintains excel-
lent symmetry for the most important first four stochastic modes (Fig. [13]).
From the realizations (Fig. [14]), the scheme clearly captures both shedding
directions. We find that for fewer samples and lower time integration ac-
curacy, the symmetry is not as well maintained (not shown). This can be
partially explained by the non-symmetric bimodal marginal of the first mode
(Fig. [16]) when using fewer samples. We also found it is more challenging
to maintain symmetry for higher Reynolds numbers. Nonetheless, for a suffi-
cient number of samples for the stochastic coefficients, our scheme maintains
excellent symmetry for all Reynolds numbers we tested.

Also from Fig. [13], we observe that the variances seem to reach a steady
value after an initial transient period. The smaller variances take longer to
reach a steady value, with the highest modes perhaps still evolving after the
final time step.

For our implementation, the reference DO simulation (Fig. [13]) was com-
puted in approximately 3 hours a 2.4Ghz computer. Each time-step required
the inversion of 11 pressure equations, as opposed to the 111 required for the
scheme without the stochastic pseudo pressure. This roughly translates to a
1000 % increase in efficiency, or about 14 days saving in terms of computa-
tional time for this computer. Since then, we have used as many as s = 25
modes for data assimilation applications [58, 59].

Sample sizes: Examining the evolution of the stochastic coefficients for
different sample sizes (top of Fig. [15]), we see that the differences are larger
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Figure 15: Stochastic energy (Var(Yi)) of the stochastic coefficients over time for different
number of samples (O(4) time integration) (top), and different time integration schemes
(10,000 samples) (bottom). The overall trends are well captured in all cases, but there
are noticeable errors for less energetic modes after long integration times when a small
number of samples and a low order time discretization scheme is used. A relatively small
number of samples (10,000) can be used for this benchmark since nearly identical results
compared to 100,000 were found for the most energetic four modes.
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columns 4-5, decreasing order in time; column 6, reference). Using 10,000 samples and
high order integration for the Stochastic coefficients, the continuous marginal pdfs are well-
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to the fourth order time integration scheme, the second order time integration scheme
has similar marginals for the first 5 modes, whereas the first order scheme differs after
the second mode. The marginals have similar shapes for all sample sizes, but the best
representations have larger sample sizes.
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for higher modes. For the most energetic first four coefficients, the results
agree well with the reference solution when using > 1, 000 samples. After
the 5th coefficient, the differences become larger, and in the 10th coefficient,
the differences begin sooner and have larger relative magnitudes. Note that
the logarithmic scale magnifies smaller errors, and the differences for the
10th are fully insignificant when compared to the variance of the first mode.
Thus, with a relatively small number of samples, it is possible to capture the
stochastic coefficient’s variances accurately. Also, it appears as though the
solution converges when the number of samples increases, which increases
our confidence in this approach.

Not only are the evolution of the variances well-represented by a smaller
number of samples, the shape of the marginals are also well-reproduced (Fig.
[16]). We observe that the marginals are well-reproduced using > 1, 000
samples, and for all time integration schemes (Fig. [16]). The magnitudes
of the bimodal peaks in the first mode are more symmetric with increased
sample sizes, which suggests using upwards of 10,000 samples is, perhaps,
advised. In fact, using such a number of samples does not affect the overall
cost of the solution scheme. That the marginals are well-represented using
smaller sizes is encouraging, since it suggests that a small number of samples
(that won’t negatively impact the efficiency of the scheme) could be used for
problems with large s: this would not substantially affect accuracy.

Order in time: Recall, we are only changing the order of the ODE solver
used to evolve the stochastic coefficients, but the overall order of the scheme is
kept fixed at first order (see §3.4). Examining the evolution of the stochastic
coefficients for different time integration schemes (bottom of Fig. [15]), we
see that the second and fourth order schemes agree well for all coefficients.
These results indicate that a first order time integration scheme can results
in significant errors, and should be avoided.

In summary, we have simulated a stochastic version of the classical flow
over a square cylinder benchmark. We found that our stochastic solution
maintains excellent symmetry, and our new scheme is 1000% more efficient
when using 10 stochastic modes. We also found that the statistics seem to
converge with increased number of samples and that accuracy benefits from
using a second-order ODE solver, even though the overall scheme is limited
to first order. Finally, smaller sample sizes of the stochastic coefficients still
produced accurate time-evolving statistic and marginal pdfs, which is very
encouraging.
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7. Conclusions and Future Research

We have derived efficient computational schemes for the DO methodol-
ogy applied to unsteady stochastic Navier-Stokes and Boussinesq equations,
and illustrated and studied the numerical aspects of these schemes. For
the discretizations in time, we developed semi-implicit projection methods
for the mean and the modes, and we employed time-marching schemes of
first to fourth order for the stochastic coefficients. For the discretizations of
the physical space, we employ conservative second-order finite-volumes, with
a special treatment for the advection terms based on a TVD scheme with
monotonized central symmetric flux limiter. Several alternate discretizations
in time and space were outlined and illustrated by comparisons. We also ad-
dressed several numerical issues specific to the DO method for fluid and ocean
flows. In particular we have shown: how to define pseudo-stochastic pres-
sures to reduce the number of matrix inversions for the pressure from O(s2)
to O(s); how to treat advection by the stochastic modes using symmetric
approximate TVD schemes; how to deal with singular subspace covariances
by generalized inversion; and how to maintain orthonormal modes at the nu-
merical level and so account for truncation and round-off errors during time
integration. Finally, we evaluated our schemes using a varied set of stochastic
flows, hence illustrating robustness but also providing benchmarks for future
schemes and implementations.

Using an asymmetric Dirac-stochastic lock-exchange benchmark, we found
excellent agreement among multiple realizations from a deterministic code
and the realizations generated from a single stochastic simulation. This
validated our numerical implementation, and confirmed that the pseudo-
stochastic pressure approach works in practice. Using a symmetric version
of the lock-exchange benchmark, we showed that the symmetric TVD advec-
tion scheme (TVD*) works well, while the CDS scheme suffers from numerical
oscillations, and the non-symmetric TVD scheme loses symmetry.

Using a lid-driven cavity flow with uncertain initial conditions, we showed
that each component converged near-optimally under both time and space
refinement. Additionally, we showed that even when a higher-order time in-
tegrator is used for the stochastic coefficients, their accuracy is still limited to
approximately first order, as discussed in §3.4. This benchmark also demon-
strated an expected decay in the variance of the stochastic coefficients, which
were shown to be very non-Gaussian.

Finally, using a stochastic flow past a square cylinder in a confined chan-
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nel, we showed that the stochastic coefficients converged with increased sam-
ples sizes and orders of time integration. We found that using > 10, 000
samples and a second order time-integrator yielded adequate performance.
This benchmark also demonstrated that our discretized DO methodology
successfully captures both vortex shedding directions, resulting in a fully
symmetric mean field. Also, we noted that using our newly defined pseudo-
stochastic pressure, we were 1000% more efficient computationally when us-
ing 10 modes.

Possible future studies include the efficient extension of our present frame-
work to flows with uncertain parameters in the governing equations and
with stochastic forcing at the boundary and in the interior. Also, our re-
sults suggest that simulations with long time integration will benefit from
more accurate time-integration scheme. Then, while our proposed symmet-
ric TVD-based advection and orthonormalization schemes for the stochastic
modes were shown to perform adequately, more optimal treatments are pos-
sible. Alternative means of discretizing the stochastic coefficients are worth
exploring for applications where rare events are important. Finally, specific
multi-resolution DO schemes can be derived for multiscale stochastic fluid
and ocean flows. Unstructured grids as well as nested approaches [8, 20]
will then be useful. The utilization of the present schemes as well as these
future advances will allow the prediction of uncertainty in realistic simula-
tions of multi-physics fluid systems, over a wide range of applications, from
micro-nano fluid engineering to multiscale ocean and climate studies.
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Appendix A. DO Discretization

In this Appendix we present the stochastic DO equations for Boussinesq
dynamics, and briefly summarize the required steps (from [52, 51, 54]) to
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obtain these equations.
Starting with a generalized Karhunen-Loève expansion [34, 51], one de-

composes the solution of eqns. (1)-(3) into a Dynamically Orthogonal (DO)
field expansion [52, 51, 53] for the velocity, density and pressure3 fields

Φ(x, t;ω) = Φ̄(x, t) +

s∑

i=1

Yi(t;ω)Φi(x, t),

Φ ≡ Φ̄+ YiΦi,

(A.1)

p(x, t;ω) = p̄(x, t) +

s∑

i=1

Yi(t, ω)pi(x, t) +

s∑

i=1

s∑

j=1

Yi(t;ω)Yj(t;ω)pij(x, t),

p ≡ p̄+ Yipi + YiYjpij ,

(A.2)

where Φ = [Φ1,Φ2, . . .]T = [u, ρ]T is the vector of prognostic state variables.
The scalar s = s(t) defines the time-dependent dimension of the stochas-
tic subspace, i.e. s is a discrete number of stochastic terms retained from
a complete expansion. The field functions Φi(x, t) are the s orthonormal
deterministic modes and the Yi(t;ω) are their s zero-mean stochastic coeffi-
cients, in general non-Gaussian. In our notation, we use the Einstein sum-
mation exclusively for summations related to the stochastic expansion. The
decomposition of pressure into a mean, linear modal and quadratic modal
component follows from the Pressure Poisson Equations (see §3.2 or Sapsis
and Lermusiaux [52]). Since both the modes and stochastic coefficients are
functions of time, a redundancy arises, which is resolved by the DO condition,

〈

Φi,
∂Φj

∂t

〉

D
= 0, ∀i, j ∈ [1, 2, . . . , s], (A.3)

where the inner product is defined as 〈a,b〉D =
∫

D
∑

i(a
ibi) dD for arbitrary

vectors of spatial functions a = [a1, a2, . . .]T and b = [b1, b2, . . .]T .
Using the DO condition, an exact set of equations can be obtained that

governs the evolution of the mean, modes, and stochastic coefficients of the
generalized Karhunen-Loève expansion. The only approximation arises from

3For convenience, we changed the sign of pij from the original definition in the Sapsis
and Lermusiaux [52]
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the truncation of the DO expansion to s(t) terms. First substitute (A.1) into
eqns. (1)-(3) to obtain (using a Langevin notation):

∂ū

∂t
+
dYi
dt

ui + Yi
∂ui

∂t
= Lu (ū+ Yiui, p,x, t;ω) ,

∂ρ̄

∂t
+
dYi
dt
ρi + Yi

∂ρi
∂t

= Lρ (ρ̄+ Yiρi,x, t;ω) ,

(A.4)

and DO decomposed versions of (2)-(3). It is from these equations, within
which the DO decomposition was inserted, that the equations for the mean,
modes and their coefficients are obtained, using the expectation operator,
the spatial inner product, and eqns. (A.2)-(A.3).

Mean. To obtain a rate of change for the mean fields, the idea is to elim-
inate the random components in the left-hand-sides of eqns. (A.4). Hence,
taking the expectation of eqns. (A.4) it can be found that the evolution of
the mean fields are governed by

∇ · ū = 0, x ∈ D,
∂ū

∂t
− 1√

Gr
∇2ū = −∇ · (ūū)−∇p̄+ ρ̄eg

−CYiYj
(∇pij +∇ · (ujui)) , x ∈ D,

∂ρ̄

∂t
− 1

Sc
√
Gr

∇2ρ̄ = −∇ · (ūρ̄)−CYiYj
∇ · (ujρi), x ∈ D,

(A.5)

with the initial and boundary conditions given by

ū (x, 0) = ū0, x ∈ D,
ρ̄ (x, 0) = ρ̄0, x ∈ D, (A.6)

ū = ḡD, x ∈ ∂DD,

∂ū

∂n
= ḡN , x ∈ ∂DN ,

ρ̄ = ḡDρ, x ∈ ∂DDρ ,

∂ρ̄

∂n
= ḡNρ, x ∈ ∂DNρ ,

(A.7)

where CYiYj
= Eω [YiYj] is an element of the covariance matrix in the stochas-

tic/error subspace. Deterministic initial and boundary conditions ( •̄ quan-
tities) are assigned to the mean. Note that in general the vector ∇ · (ujui)
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differs from ∇ · (uiuj) (recall that ∇ · (ujui)q =
∂ujruiq

∂xr
6= ∂uirujq

∂xr
; e.g.,

∂vjui

∂y
6= ∂viuj

∂y
).

Modes. The evolution of the modes is also obtained from eqns. (A.4).
To do so, the idea is to eliminate the random coefficients in front of the
time derivatives of the modes. The essential steps are to multiply these
equations with a stochastic coefficient Yj, apply the expectation operator, and
substitute an expression for Eω

[
∂Yi

∂t
Yj
]
, which is obtained by projecting the

equation unto Φk and imposing the DO condition. From this the following
governing evolution equations for the modes can be found:

∇ · ui = 0, x ∈ D,
∂ui

∂t
= Qu

i − 〈Qi,Φj〉D uj , x ∈ D,
∂ρi
∂t

= Q
ρ
i − 〈Qi,Φj〉D ρj , x ∈ D,

(A.8)

where

Qi = [Qu

i ,Q
ρ
i ]

T
=

[

C−1
YiYj

Eω [Lu Yj] , C
−1
YiYj

Eω [Lρ Yj]
]T

,

Qu

i =
1√
Gr

∇2ui −∇ · (uiū)−∇ · (ūui)−∇pi + ρie
g

−C−1
YiYj

MYjYmYn (∇pmn +∇ · (unum) ) ,

Q
ρ
i =

1

Sc
√
Gr

∇2ρi −∇ · (uiρ̄)−∇ · (ūρi)

−C−1
YiYj

MYjYmYn (∇ · (unρm) ) ,

and MYjYmYn = Eω [YjYmYn] is a third moment. The right-hand-sides in
eqns. (A.8) correspond the total rate of change of the subspace (without a
DO condition) minus the projection of this rate of change on the subspace
itself (which is subtracted to ensure the DO condition). We note that in
general ∇ · (ūui) 6= ∇ · (uiū) since

∂v̄ui

∂y
6= ∂viū

∂y
for example.

The initial and boundary conditions for the modes are obtained from
those of the full stochastic fields, eqns. (2) and (3), but reduced to their
dominant initial error subspace of size s0,

ui (x, 0) = ui,0 (x) , x ∈ D,
ρi (x, 0) = ρi,0 (x) , x ∈ D, (A.9)
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and

ui = gi,D, x ∈ ∂DD,

∂ui

∂n
= gi,N , x ∈ ∂DN ,

ρi = gi,Dρ , x ∈ ∂DDρ ,

∂ρi
∂n

= gi,Nρ , x ∈ ∂DNρ .

(A.10)

Coefficients. Finally, to obtain the evolution of the stochastic coefficients
from eqns. (A.4), the idea is to eliminate the modes in the term contain-
ing the time derivatives of the random coefficients. To do so, project the
evolution eqns. (A.4) onto each mode i, apply the DO conditions, and essen-
tially impose that each coefficient is of zero mean. The resulting governing
stochastic ODEs are

dYi
dt

= 〈L − Eω [L] ,Φi〉D ,
= 〈Fm,Φi〉D Ym − 〈∇pmn +∇ · (unum),ui〉D (YmYn −CYmYn)

− 〈∇ · (unρm), ρi〉D (YmYn −CYmYn) ,

(A.11)

where L = [Lu,Lρ]T and Fm = [Fu

m,F
ρ
m]

T with

Fu

m =
1√
Gr

∇2um −∇ · (umū)−∇ · (ūum)−∇pm + ρme
g,

Fρ
m =

1

Sc
√
Gr

∇2ρm −∇ · (umρ̄)−∇ · (ūρm),

The initial conditions for the coefficients are obtained from those of the
full stochastic fields, eqn. (2), by projection onto each initial mode i, Φi,0,
and removal of the mean. This leads to:

Yi (t0;ω) =
〈
Φ0 − Φ̄0 ,Φi,0

〉

D ,

= 〈u0 − ū0 , ui,0〉D + 〈ρ0 − ρ̄0 , ρi,0〉D , ω ∈ Ω .
(A.12)

In this Appendix we stated the DO equations for the mean, modes, and
stochastic coefficients of the stochastic Boussinesq equations.
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Figure B.17: There are different ways to treat the stochastic coefficients when correcting
the discrete orthonormalization of the modes. In this pictorial analogy, the standard 2D
Cartesian bases and coordinates represent the modes and stochastic coefficients, respec-
tively.

Appendix B. Numerical orthonormalization procedure

In this Appendix, we present our newly developed, numerically efficient,
orthonormalization procedure based on the discussion in §5.2.

Consider the pictorial analogy showing different strategies when orthonor-
malizing the basis (Fig. [B.17]). In case (a), the argument is that the coef-
ficients were evolved correctly, and all the error lies in the basis evolution.
This is not true because we evolve the coefficients by taking an inner prod-
uct of the equations using the bases at the old time-step. In case (b), the
argument is that the energy and ‘direction’ of the realizations were correctly
evolved. When correcting the bases, the direction and energy are maintained,
but the actual realization is modified. In case (c), the argument is that the
realizations were evolved correctly. However, it is unlikely that the errors
in the modes and coefficients cancel during the time evolution. Also, while
not evident from the pictorial analogy, the energy of the coefficients change
in case (c). This is because the length of the basis changes when orthonor-
malized, and this length change is then accounted for in the coefficients in
order to maintain the coordinate of the realization. The case (b) strategy is
a compromise between cases (a) and (c), and it results in the lowest error for
the lock-exchange cases in §6.1. The errors were the largest for case (a), and
the errors for case (c) were marginally larger compared to case (b).

To be clear, case (b) is shown to perform best for the specific cases in
§6.1, and these results are not proven to be universally applicable. Also, we
made no attempt to provide an exhaustive list of all the orthonormalization
strategies. For example, arguing that the coefficients still live in the bases
of the old time step, one can consider projecting the coefficients from this
old basis onto the new basis before orthonormalization. Therefore, the issue
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of the optimal orthonormalization strategy is left open to future research.
Nonetheless, we believe our current approach is sufficient for most applica-
tions since no strategy will influence the scheme’s overall order of accuracy.
Any improved strategy will only reduce the size of the error, which will be of
order ∆t smaller than the truncation error. Therefore, any accuracy issues
due to orthonormalization can be resolved by reducing the size of the time
step when using the current scheme. Our orthonormalization procedure for
case (b) is described next.

For case (b), we want the new orthonormalized basis to: approximately
recover the specific realizations before the orthonormalization; and exactly
maintain the stochastic energy. Mathematically we, ideally, want both:

Φh,i(Yr,i)
T ≈ ΦO

h,i(Y
O
r,i)

T , (B.1)

Tr(Ck⋆
Yr,iYr,j

) = Tr(Ck⋆,O
Yr,iYr,j

), (B.2)

where the orthonormalized basis is defined such that
〈
ΦO

h,i,Φ
O
h,j

〉

D = δij, and
the trace operator Tr simply sums the diagonal entries of a matrix. In order
to preserve the second property, we first rotate the stochastic system such
that the covariance matrix is diagonal:

Ck
YiYj

= E[Yr,iYr,j] = VDCDDCV
T
DC , (B.3)

Y DC
r,i = Yr,iVDC , (B.4)

ΦDC
h,i = Φh,iVDC, (B.5)

which gives the decorrelated (or DC) stochastic coefficients. By starting
with a decorrelated system, we have a unique and convenient reference frame
which we can use to enforce the Tr(Ck⋆

YiYj
) property.

Next we perform the orthonormalization as follows

Mij =
〈
ΦDC

h,i ,Φ
DC
h,j

〉

D = VMDMVT
M , (B.6)

Y OC
r,i = Y DC

r,i VM

√

DM , (B.7)

ΦOC
h,i = ΦDC

h,i VM

√

D−1
M . (B.8)

The above could be accomplished by directly calculating the Singular Value
Decomposition of the ΦDC

h,i matrix, but the above procedure has the advan-
tage of enabling the user to specify any desired (possibly non-linear) inner
product. In either case, the two approaches are similar in efficiency and give

52



the same results. To verify that (B.1) is satisfied, we substitute the above
expression in (B.1)

ΦDC
h,i (Y

DC
r,i )T = ΦOC

h,i (Y
OC
r,i )T ,

= ΦDC
h,i VM

√

D−1
M

(

Y DC
r,i VM

√

DM

)T

,

= ΦDC
h,i VM

√

D−1
M

√

DMVT
M(Y DC

r,i )T ,

= ΦDC
h,i (Y

DC
r,i )T ,

since the eigen-vectors are orthonormal VMVT
M = I. Therefore the first

property, (B.1), is exactly satisfied at this stage. Stopping here would give
the case (c) strategy.

Finally, we decorrelate the samples again, while ensuring that the stochas-
tic energy is preserved:

C
k,OC
YiYj

= E[Y OC
r,i Y

OC
r,j ] = VODOV

T
O, (B.9)

Y O
r,i = Y OC

r,i VO

√

Tr(DDC)

Tr(DO)
, (B.10)

ΦO
h,i = ΦOC

h,i VO. (B.11)

Note that Tr(DO) = Tr(DDCDM), but that DO 6= DDCDM . This ensures
that (B.2) is maintained, but now we can only approximately satisfy (B.1).
The over-all correction is then as follows:

Y O
r,i = Yr,iVDCVM

√

DMVO

√

Tr(DDC)

Tr(DO)
, (B.12)

ΦO
h,i = Φh,iVDCVM

√

D−1
M VO. (B.13)

This procedure is robust even if Ck,OC
YY is singular, however it does require

a non-singular Mij which will normally be the case if modes are properly
initialized. Also, the number of floating point operations is dominated by
the calculation of Mij if the number of spatial points exceeds the number
of realizations. Nonetheless, the overall cost of the orthonormalization is
inexpensive compared to the inversion of the pressure Poisson equations.

53



References

[1] Bennett AF (1992) Inverse Methods in Physical Oceanography., 1st edn.
Cambridge University Press, New York

[2] Cameron RH, Martin WT (1947) The orthogonal development of non-
linear functionals in series of Fourier-Hermite functionals. Ann of Math
48:385–392

[3] Carpenter MH, Kennedy C (1994) Fourth-order 2N-storage Runge-
Kutta schemes. NASA Report TM 109112, NASA Langley Research
Center, Hampton, VA

[4] Chapra SC, Canale RP (2006) Numerical Methods for Engineers, 5th
edn. McGraw-Hill Higher Education, Boston, MA

[5] Chen D, Liu J (2000) Mixture Kalman filters. J Roy Statist Soc Ser A
62:493–508

[6] Cushman-Roisin B, Beckers JM (2010) Introduction to geophysical fluid
dynamics: Physical and Numerical Aspects. Academic Press.
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